
The table below shows the standard AQA assembly language instruction set that should be used
to answer part (a) and part (b)

Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location
specified by <memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the
memory location specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the
value in register n and store the result in register
d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from
the value in register n and store the result in
register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into
register d.

CMP Rn, <operand2> Compare the value stored in register n with the
value specified by <operand2>.

B <label> Always branch to the instruction at position
<label> in the program.

B<condition> <label> Branch to the instruction at position <label> if
the last comparison met the criterion specified
by <condition>. Possible values for
<condition> and their meanings are:
EQ: equal to
NE: not equal to
GT: greater than
LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation
between the value in register n and the value
specified by <operand2> and store the result in
register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between
the value in register n and the value specified by
<operand2> and store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or)
operation between the value in register n and
the value specified by <operand2> and store the
result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the
value specified by <operand2> and store the
result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n
by the number of bits specified by <operand2>
and store the result in register d.

1.

Page 1 of 20King Edward's School

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n
by the number of bits specified by <operand2>
and store the result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character is
a # or an R:
•   # – use the decimal value specified after the #, eg #25 means use the decimal value 25
•   Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

(a)  Shade one lozenge to show which of the assembly instructions in the figure below uses
immediate addressing.

 Instruction Immediate Addressing

A LDR R3, 42

B MOV R3, #42

C STR R3, 101

D SUB R3, R2, R1

(1)

Page 2 of 20King Edward's School

(b)  A computer program is required that will multiply the value stored in X by 2 if it is less than
50 and leave it unchanged if it is 50 or more.

The algorithm for this task can be written in pseudocode as:

IF X < 50 THEN

  X ← X * 2
ENDIF

Write an assembly language program using the AQA assembly language instruction set
shown in the table above to carry out this task.

At the start, the value of X is stored in memory location 101

(4)

(Total 5 marks)

Page 3 of 20King Edward's School

This table is included so that you can answer parts (a) and (b).

Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location
specified by <memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the
memory location specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the
value in register n and store the result in register
d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from
the value in register n and store the result in
register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into
register d.

CMP Rn, <operand2> Compare the value stored in register n with the
value specified by <operand2>.

B <label> Always branch to the instruction at position
<label> in the program.

B <condition> <label> Branch to the instruction at position <label> if
the last comparison met the criterion specified
by <condition>. Possible values for
<condition> and their meanings are:
EQ: equal to
NE: not equal to
GT: greater than
LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation
between the value in register n and the value
specified by <operand2> and store the result in
register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between
the value in register n and the value specified by
<operand2> and store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or)
operation between the value in register n and
the value specified by <operand2> and store the
result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the
value specified by <operand2> and store the
result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n
by the number of bits specified by <operand2>
and store the result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n
by the number of bits specified by <operand2>
and store the result in register d.

2.

Page 4 of 20King Edward's School

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is
a # or an R:

•   # – use the decimal value specified after the #, eg #25 means use the decimal value 25
•   Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general-purpose registers that the programmer can use are numbered 0–12

The figure below shows an assembly language program that has been written using the AQA
Assembly Language Instruction Set, which is given in the table above.

  LDR R0, 120
  LDR R1, 121
  MOV R3, #0
loop:
  CMP R1, #0
  BEQ exit
  AND R2, R1, #1
  CMP R2, #0
  BEQ skip
  ADD R3, R3, R0
skip:
  LSL R0, R0, #1
  LSR R1, R1, #1
  B loop
exit:
  STR R3, 122
  HALT

(a)  State the name of the addressing mode used in the instruction ADD R3, R3, R0

(1)

Page 5 of 20King Edward's School

(b)  Memory location 120 contains the value 23 and memory location 121 contains the value 5.

Complete the trace table to show how the contents of the memory locations and registers
change when the program in above code is executed.

Memory locations Registers

120 121 122 R0 R1 R2 R3

23 5

(5)

(c)  State the purpose of the program in the code above.

(1)

(d)  The program in the code above has been written using assembly language.

State two reasons why the programmer may have chosen to write this program in
assembly language rather than in a high-level programming language.

Reason 1 __

Reason 2 __

(2)

Page 6 of 20King Edward's School

(e)  The program in the code above will be translated into machine code.

Explain the relationship between an assembly language instruction and a machine code
instruction.

(1)

(Total 10 marks)

The table below shows the standard AQA assembly language instruction set. This should be
used to answer question parts (a) and (b).

3.

Page 7 of 20King Edward's School

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.

CMP Rn, <operand2> Compare the value stored in register n with the value
specified by <operand2>.

B <label> Always branch to the instruction at position <label> in the
program.

B<condition> <label> Branch to the instruction at position <label> if the last
comparison met the criterion specified by <condition>.

Possible values for <condition> and their meanings are:

 EQ: equal to NE: not equal to

 GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and store
the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the result
in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the result
in register d.

HALT Stops the execution of the program.

Page 8 of 20King Edward's School

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is
a # or an R:

•   # – use the decimal value specified after the #, eg #25 means use the decimal value 25.

•   Rm – use the value stored in register m, eg R6 means use the value stored in register 6.

The available general purpose registers that the programmer can use are numbered 0 to 12.

(a) Figure 1 shows an incomplete assembly language program. The intended purpose of the
code is to count from 1 to 10 inclusive, writing the values to memory location 17, which is
used to control a motor.

Complete the code in Figure 1. You may not need to use all four lines for your solution and
you should not write more than one instruction per line.

Figure 1

(4)

(b) R1 contains the decimal value 7. What value will be contained in R1 after the instruction
below is executed?

LSL R1, R1, #2

(1)

(Total 5 marks)

Page 9 of 20King Edward's School

Standard AQA assembly language instruction set. This should be used to answer question
part (a).

LDR Rd, <memory ref> Load the value stored in the memory location
specified by <memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the
memory location specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the
value in register n and store the result in register
d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from
the value in register n and store the result in
register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into
register d

CMP Rn, <operand2> Compare the value stored in register n with the
value specified by <operand2>.

B <label> Always branch to the instruction at position
<label> in the program.

B<condition> <label> Branch to the instruction at position <label> if
the last comparison met the criterion specified
by <condition>.

Possible values for <condition> and their
meanings are:

EQ: equal to

NE: not equal to

GT: greater than

LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation
between the value in register n and the value
specified by <operand2> and store the result in
register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between
the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the
value specified by <operand2> and store the
result in register d.

4.

Page 10 of 20King Edward's School

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n
by the number of bits specified by <operand2>
and store the result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n
by the number of bits specified by <operand2>
and store the result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is
a # or an R:

•   # - Use the decimal value specified after the #, e.g. #25 means use the decimal value 25
•   Rm – Use the value stored in register m, e.g. R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0 to 12

The figure below shows an algorithm, written in pseudo-code, that is used to multiply two box
variables W and X together. The resulting answer is stored in variable Y. It can be assumed that
both W and X are positive integers. Z is a temporary variable. The operation DIV performs integer
division.

Line numbers are included but are not part of the algorithm.

1 W ← 9

2 x ← 12

3 Y ← 0

4 REPEAT

5   z ← W LOGICAL BITWISE AND 1

6   IF Z = 1 THEN

7     Y ← Y + X

8   END IF

9   W ← W DIV 2

10   X ← X * 2

11   UNTIL W = 0

Page 11 of 20King Edward's School

Write a sequence of assembly language instructions that perform multiplication using the same
method shown in the algorithm above.

Assume that registers 0, 1, 2 and 3 are used to store the values represented by variables W, X,
Y and Z accordingly.

Some lines, including those equivalent to line numbers 1 to 5 in the algorithm above, have been
completed for you.

 MOV R0, #9
  MOV R1, #12

 MOV R2, #0
      startloop: AND R3, R0, #1

         jump:

             B startloop
        endloop:

(Total 7 marks)

Page 12 of 20King Edward's School

Standard AQA assembly language instruction set

LDR Rd, <memory ref>
Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref>
Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2>
Add the value specified in <operand2> to the value in register n
and store the result in register d.

SUB Rd, Rn, <operand2>
Subtract the value specified by <operand2> from the value in
register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.

CMP Rn, <operand2>
Compare the value stored in register n with the value specified by
<operand2>.

B <label>
Always branch to the instruction at position <label> in the
program.

B <condition> <label>

Branch to the instruction at position <label> if the last
comparison met the criterion specified by <condition>. Possible
values for <condition> and their meanings are:
  EQ: equal to    NE: not equal to
  GT: greater than  LT: less than

AND Rd, Rn, <operand2>

Perform a bitwise logical AND operation between the value in
register n and the value specified by <operand2> and store the
result in register d.

ORR Rd, Rn, <operand2>

Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and store the
result in register d.

EOR Rd, Rn, <operand2>

Perform a bitwise logical XOR (exclusive or) operation between
the value in register n and the value specified by <operand2>
and store the result in register d.

MVN Rd, <operand2>
Perform a bitwise logical NOT operation on the value specified by
<operand2> and store the result in register d.

LSL Rd, Rn, <operand2>
Logically shift left the value stored in register n by the number of
bits specified by <operand2> and store the result in register d.

LSR Rd, Rn, <operand2>
Logically shift right the value stored in register n by the number of
bits specified by <operand2> and store the result in register d.

HALT Stops the execution of the program.

5.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is
a # or an R:

•   # – use the decimal value specified after the #, eg #25 means use the decimal value 25
•   Rm – use the value stored in register m, eg R6 means use the value stored in register 6

Page 13 of 20King Edward's School

The available general-purpose registers that the programmer can use are numbered 0–12

The Vernam cipher encrypts a plaintext character by performing a logical operation between a
character in the plaintext and part of the key.

Write an assembly language program, using the AQA assembly language instruction set
shown in the table above, to encrypt a plaintext character using this method.

You should assume that:

•   the character code of the plaintext character to be encrypted is stored in memory location
101

•   the part of the key to use to encrypt the character is stored in memory location 102

The encrypted ciphertext character should be stored in memory location 103

(Total 3 marks)

Page 14 of 20King Edward's School

This table is included so that you can answer part (a).

Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory
location specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the
value in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.

CMP Rn, <operand2> Compare the value stored in register n with the value
specified by <operand2>.

B <label> Always branch to the instruction at position <label> in
the program.

B <condition> <label> Branch to the instruction at position <label> if the last
comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:
  EQ: equal to    NE: not equal to
  GT: greater than  LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the
value in register n and the value specified by <operand2>
and store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register
d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

6.

Page 15 of 20King Edward's School

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is
a # or an R:

•   # – use the decimal value specified after the #, eg #25 means use the decimal value 25
•   Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general-purpose registers that the programmer can use are numbered 0–12

The code below shows an assembly language program which has been written using the AQA
assembly language instruction set. The instruction set is explained in the table above.

  CMP R2, #0
  BEQ exit
  MOV R0, #0
  MOV R3, #1
moveleft:
  LSL R2, R2, #1
  LSL R3, R3, #1
  CMP R2, R1
  BLT moveleft
  BEQ mainloop
  LSR R2, R2, #1
  LSR R3, R3, #1
mainloop:
  CMP R1, R2
  BLT skip
  ADD R0, R0, R3
  SUB R1, R1, R2
skip:
  AND R4, R3, #1
  CMP R4, #1
  BEQ skipshiftR2
  LSR R2, R2, #1
skipshiftR2:
  LSR R3, R3, #1
  CMP R3, #0
  BNE mainloop
exit:
  HALT

The program takes its input values from registers R1 and R2 and stores its output in registers R0
and R1

Page 16 of 20King Edward's School

(a)  Complete the trace table below to show the results of executing the program in the code
above when the initial values in registers R1 and R2 are 34 and 6

Each register can hold a 16-bit value.

You may find it easier to understand the operation of the program if you write the contents
of the registers out in both binary and decimal.

You may not need to use all the rows in the table.

R0 R1 R2 R3 R4

 100010 (34) 110 (6)

(6)

(b)  The initial values for the program (its inputs) are stored in R1 and R2 and the final values
stored in R0 and R1 are its outputs.

By considering the inputs and the outputs in your trace table for part (a), describe the
purpose of the program.

(2)

(Total 8 marks)

Page 17 of 20King Edward's School

Table 1 shows the standard AQA assembly language instruction set that should be used to
answer the question below.

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref>
Load the value stored in the memory location specified by <memory
ref> into register d.

STR Rd, <memory ref>
Store the value that is in register d into the memory location specified
by <memory ref>.

ADD Rd, Rn, <operand2>
Add the value specified in <operand2> to the value in register n and
store the result in register d.

SUB Rd, Rn, <operand2>
Subtract the value specified by <operand2> from the value in register n
and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.

CMP Rn, <operand2>
Compare the value stored in register n with the value specified by
<operand2>.

B <label> Always branch to the instruction at position <label> in the program.

B<condition> <label>

Branch to the instruction at position <label> if the last comparison met
the criterion specified by <condition>. Possible values for
<condition> and their meanings are:
    EQ: equal to      NE: not equal to
    GT: greater than    LT: less than

AND Rd, Rn, <operand2>

Perform a bitwise logical AND operation between the value in register n
and the value specified by <operand2> and store the result in register
d.

ORR Rd, Rn, <operand2>

Perform a bitwise logical OR operation between the value in register n
and the value specified by <operand2> and store the result in register
d.

EOR Rd, Rn, <operand2>

Perform a bitwise logical XOR (exclusive or) operation between the
value in register n and the value specified by <operand2> and store the
result in register d.

MVN Rd, <operand2>
Perform a bitwise logical NOT operation on the value specified by
<operand2> and store the result in register d.

LSL Rd, Rn, <operand2>
Logically shift left the value stored in register n by the number of bits
specified by <operand2> and store the result in register d.

LSR Rd, Rn, <operand2>
Logically shift right the value stored in register n by the number of bits
specified by <operand2> and store the result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

7.

Page 18 of 20King Edward's School

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is
a # or an R:
•   # – use the decimal value specified after the #, eg #25 means use the decimal value 25
•   Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

Write an assembly language program to encrypt a single character using the Caesar cipher. The
character to be encrypted is represented using a character set consisting of 26 characters with
character codes 0–25. The output of the process should be the character code of the encrypted
character.

The assembly language instruction set that you should use to write the program is listed in
Table 1.

Table 2 shows the character codes and the characters they represent.

Table 2

Code Character Code Character Code Character
0 A 9 J 18 S

1 B 10 K 19 T

2 C 11 L 20 U

3 D 12 M 21 V

4 E 13 N 22 W

5 F 14 O 23 X

6 G 15 P 24 Y

7 H 16 Q 25 Z

8 I 17 R

Page 19 of 20King Edward's School

•   Memory location 100 contains the character code to be encrypted, which is in the range
0–25

•   Memory location 101 contains an integer key to be used for encryption, which is in the
range 0–25

•   The program should store the character code of the encrypted character in memory
location 102

(Total 4 marks)

Page 20 of 20King Edward's School

